291 research outputs found

    Macromodeling strategy for digital devices and interconnects

    Get PDF
    International audienceThis paper proposes a macromodeling approach for the simulation of digital interconnected systems. Such an approach is based on a set of macromodels describing IC ports, IC packages and multiconductor interconnect structures in standard circuit simulators, like SPICE. We illustrate the features of the macromodels and we demonstrate the proposed approach on a realistic simulation problem

    Scattering-based nonlinear macromodels of high-speed differential drivers

    Get PDF
    This paper introduces a scattering-based nonlinear macromodeling framework for high-speed differential drivers. Using an industrial test case, we show that the proposed scattering formulation enables more accurate and robust model identification with respect to standard voltage-current representations. The combination of proposed driver models with a Waveform Relaxation solver allows accurate and efficient transient channel simulation, including nonlinear and dynamic termination effect

    On tuning passive black-box macromodels of LTI systems via adaptive weighting

    Get PDF
    This paper discusses various approaches for tuning the accuracy of rational macromodels obtained via black-box identification or approximation of sampled frequency responses of some unknown Linear and Time-Invariant system. Main emphasis is on embedding into the model extraction process some information on the nominal terminations that will be connected to the model during normal operation, so that the corresponding accuracy is optimized. This goal is achieved through an optimization based on a suitably defined cost function, which embeds frequency-dependent weights that are adaptively refined during the model construction. A similar procedure is applied in a postprocessing step for enforcing model passivity. The advantages of proposed algorithm are illustrated on a few application examples related to power distribution networks in electronic system

    A Macromodeling-Based Hybrid Method for the Computation of Transient Electromagnetic Fields Scattered by Nonlinearly Loaded Metal Structures

    Get PDF
    In this article, we present a hybrid numerical scheme to compute the transient electromagnetic fields scattered by a metallic structure loaded with lumped nonlinear loads. The proposed scheme is based on three successive steps. First, the field coupling problem to the structure with the nonlinear loads removed is solved in the frequency domain using a method-of-moments (MoM) formulation. The unloaded structure is thus characterized as a generalized multiport Thevenin equivalent, whose components are represented as time-domain operators by performing a set of rational approximations followed by closed-form Laplace transform inversion. Transient port voltages and currents in the presence of nonlinear loads are then computed using a standard circuit solver. As a last step, the substitution theorem is used to solve the radiation problem again in the frequency domain using a MoM solver, the results of which are then translated into the time domain by means of rational approximations and recursive convolution operations. The proposed method enables an accurate and efficient evaluation of the transient nonlinearly scattered fields by the loaded structure, with a good potential for scalability to large-scale high-complexity nonlinear shields. Extensive validations are provided to demonstrate the accuracy of the proposed method, which is here applied to the characterization of energy-selective shielding for protection of sensitive devices from high-intensity radiated fields

    Contributions of candidate-gene research to understanding the role of genetic diversity in the adaptative response of Mediterranean conifers to drought -

    Get PDF
    corecore